
An introduction to the use of HSM

Jelte Jansen∗, NLnet Labs

NLnet Labs document 2008-draft May 13, 2008

Abstract

This document describes the use of Hardware Security Modules (HSM).

It contains information and examples on how to get them working in your
environment with free software tools.

The main part of this document consists of two tutorials on how to make
your software applications capable of using hardware modules, both through
OpenSSL’s EVP API, and PKCS #11. These should get a software devel-
oper started, and provide pointers where to go from there. The programming
language used is C.

The appendices contain information about specific hardware modules, like
the AEP Keyper and the Eutron ITSEC USB token.

Contents

1 Introduction 3

1.1 HSM . 3

1.2 PKCS . 3

1.3 FIPS 140 . 4

2 Tools and Software 5

2.1 OpenSC . 5

2.2 pkcs11-tool . 6

3 PKCS #11 8

3.1 Function definitions . 8

3.2 Templates . 8

3.3 Platform specific header . 9

3.4 Initialization and cleanup . 10

3.5 Example 1: Reading keys . 13

3.6 Example 2: Generating a key pair 16

3.7 Example 3: Signing data . 19

∗jelte@NLnetLabs.nl

File information:

CONTENTS

4 OpenSSL and EVP 26

4.1 Configuration file . 26
4.2 The openssl command-line tool 27
4.3 Code and documentation . 27
4.4 Some general functions . 27
4.5 Example 1: Signing . 32
4.6 Example 2: Verification . 34

5 Deciding whether to use PKCS #11 or EVP 38

5.1 PKCS #11 . 38
5.2 EVP . 38

A AEP Keyper 39

A.1 Driver . 39
A.2 Utilities . 39
A.3 Using the driver . 40
A.4 Status . 40
A.5 Caveats and common error messages 40

B Eutron ITSEC CryptoIdentity USB-token 41

B.1 Driver . 41
B.2 Utilities . 41
B.3 Status . 41
B.4 Caveats and common error messages 41

2

1 INTRODUCTION

1 Introduction

In this document we’ll give an introduction to hardware assisted cryptography.
We’ll talk a bit about PKCS #11, the ’standard’ API for smartcards and hard-
ware cryptography modules. We’ll also discuss the OpenSSL EVP API, which
has, amongst others, a PKCS #11 backend.

We’ll also give some pointers about how one would go about getting these
magical machines working, with some specific examples of the hardware we’ve
had the honour of playing with. In the main part of this document, we’ll give
two tutorials on programming your own applications to talk to these machines.

Some knowledge on cryptography is assumed. Mainly, we won’t discuss spe-
cific algorithms or best practices. They depend largely on the intended use, and
there are other, more extensive documents that handle these subjects. In exam-
ples given, we keep to a few commonly used algorithms, but this is in no way a
reason to choose them over others.

Thanks go out to the gentle people at AEP Networks, for providing a Keyper
HSM to test with.

This document is also available on-line in HTML format at
http://www.NLnetLabs.nl/publications/hsm.
The code examples can be found at
http://www.NLnetLabs.nl/publications/hsm/examples

This is version 1.0 of the document, dated May 2008. If you find an error,
have any comments, or would like to see this document extended, please let me
know at jelte@NLnetLabs.nl

1.1 HSM

A Hardware Security Module (HSM) can come in various shapes and forms; there
are smart cards, PCI cards to plug into a PC, usb tokens, separate boxes that
communicate over channels like TCP/IP, USB or rs-232, etc. Regardless of shape
or package, the main purposes of these modules is usually either:

• Speeding up cryptographic operations

• Keeping keys safe

But of course, there could be other purposes.
Some modules may be able to offer both, but more often than not this is not

the case.

1.2 PKCS

The PKCS line of standards was made by RSA laboratories. These supply a
wealth of specifications concerning cryptography. What we are mainly interested
in here is number 11, also called Cryptoki, which deals with a standardized API
for talking to cryptographic tokens.

3

1 INTRODUCTION

1.3 FIPS 140

The Federal Information Processing Standard 140 is a series of standards con-
cerning cryptographic modules, both in hardware and software. The current
version is FIPS 140-2, but a third is in development.

The latest version can be found on the NIST website at
http://csrc.nist.gov/publications/PubsFIPS.html

It defines a number of levels of security, that a certain module can be certified
for, in short:

• Level 1: This is the lowest level. A security level 1 cryptographic module
does not have to have physical protection, and only need to incorporate
one approved algorithm or function.

• Level 2: Security level 2 requires tamper evidence to be added to the mod-
ule, as well as role-based authentication.

• Level 3: In addition to tamper evidence, for security level 3, a module
must also provide tamper resistance. This level also requires identity-based
authentication.

• Level 4: This is the highest level specified by FIPS 140. This level requires
complete protection around the cryptographic module, detecting and re-
sponding to all unauthorized attempts at physical access, as well as envi-
ronmental anomalies (power fluctuations, extreme temperatures).

4

2 TOOLS AND SOFTWARE

2 Tools and Software

In this section, we’ll talk about some common open-source tools to manipulate
and use data on smart cards and other crypto hardware with a PKCS #11
interface. Before you start writing everything yourself, it might be a good idea
to check whether there are other implementations that may suit your needs.

2.1 OpenSC

OpenSC (http://www.opensc-project.org/) is a set of libraries and drivers
for smartcards and cryptographic tokens. It is designed to work with PKCS #11
supporting cards. OpenCT provides drivers for card readers, and tokens that
are comprised of both a card and a reader (ie. usb tokens, and other ’complete’
devices).

The project maintains a compatibility list at its web site:

http://www.opensc-project.org/openct/wiki/

But even if a device is not on the list, it might work. A good way to check is
to just try.

% opensc-tool -l

Readers known about:

Nr. Driver Name

0 openct OpenCT reader (detached)

1 openct OpenCT reader (detached)

2 openct OpenCT reader (detached)

3 openct OpenCT reader (detached)

4 openct OpenCT reader (detached)

So we see that it uses the openct package as a backend, but does not see any
cards or tokens present at this moment.

So let’s see what happen when we insert a token. See the specific appendix
on how to get the driver working, if needed.

Let’s insert an Eutron ITSEC CryptoIdentity token, and run our program
again.

% opensc-tool -l

Readers known about:

Nr. Driver Name

0 openct Eutron CryptoIdendity

If you get strange errors here, refer to the appendix for more information,
and see if your device is listed there.

This tool can be used for a few basic functions, or you could even construct
your own data packet and send it to the card, but other than that its use is
limited, and it can only see tokens directly supported by openct. Let’s take a
look at a more flexible tool.

5

2 TOOLS AND SOFTWARE

2.2 pkcs11-tool

This tool, which also comes with opensc, gives the user the option to provide a
driver module. I.E. the module that exports the PKCS #11 functions. So as
long as you have one of those suitable for your operating system, you can use
this to access your token.

Actual results may differ though, while I have been able to do basic operations
with the AEP Keyper for example, I did notice some minor faults in the tool,
and in the drivers. Of course, these will be probably be fixed in the next version,
where possible, I’ll try to describe problems and workarounds for specific devices
in the appendices.

Examples:

For these examples we use the AEP Keyper, whose driver is called pkcs11.GCC4.0.2.so.4.04.
See appendix A for more information about getting it running.

We have just initialized it as specified in the documentation.

% pkcs11-tool --module=/opt/lib/pkcs11.GCC4.0.2.so.4.04 -l -O

Please enter User PIN:

%

The -l option tells the tool to ask for the user PIN and log into the token if
necessary. The -O switch asks the token for a list of objects, and prints some
information about them.

Since we have just initialized the token, there is no information on it yet. So
let’s generate a key that we can use.

% pkcs11-tool --module=/opt/lib/pkcs11.GCC4.0.2.so.4.04 -l -k \

> -d 01 -a zone_key --key-type rsa:2048

Please enter User PIN:

Key pair generated:

Private Key Object; RSA

label: zone_key

ID: 01

Usage: decrypt, sign, unwrap

Public Key Object; RSA 2048 bits

label: zone_key

ID: 01

Usage: encrypt, verify, wrap

Again, for this operation (as for most) we need to log in to the token, so we
provide -l. Then we tell it to create a key pair (-k) with id 1 (-d <hex>) and
label ’zone key’ (-a). We want the key to be of type RSA, with a modulus size
of 2048 bits (–key-type).

As before, the program asks us for the token user’s PIN and then starts
generating the key. When it’s done, it prints out some information about the
created objects.

6

2 TOOLS AND SOFTWARE

How you can make a backup of your keys, or move them to another token
is out of scope for this document, but detailed instructions about this should be
provided in the manual of the better HSM devices.

Some devices cannot create certain kinds of keys, for instance when they are
too big, or when they would provide an operation that the device cannot support.
In that case, this command will obviously fail.

Let’s see whether it has really worked:

% pkcs11-tool --module=/opt/lib/pkcs11.GCC4.0.2.so.4.04 -l -O

Please enter User PIN:

Private Key Object; RSA

label: zone_key

ID: 01

Usage: decrypt, sign, unwrap

The label and id are as we previously specified. The label is just a string
where you can place information about this specific key. The ID is a hexadecimal
number that you use to specify this specific key when calling the application that
needs to use it.

So, now that we have a key on there, we should be able to use any program
that talks PKCS #11 to sign data. Here’s one that does indirectly (through
OpenSSL’s EVP API).

% OPENSSL_CONF=~/aep_ssl_conf ldns-signzone -E pkcs11 \

> -k 1,5 nlnetlabs.nl

Engine key id: 1, algo 5

PKCS#11 token PIN:

%

This program itself is not relevant, except maybe that it signs data, but the
way it works is. Through an environment variable we tell it to use a specific con-
figuration file. That file adds the engine ’pkcs11’ to the list of possible OpenSSL
engines, and the driver we used previously. We talk more about this configuration
file in section 4.1.

With that configuration file read, and OpenSSL adding the specified engines
to its list, we tell the tool to use ’pkcs11’, and ’key 1’. The ’,5’ is for the tool to
know what to do with that exact key, and is not relevant here.

7

3 PKCS #11

3 PKCS #11

The best way to learn PKCS #11 is, well, to read the specification, available at

http://www.rsa.com/rsalabs/node.asp?id=2133

It is a complete API description containing everything you need to know and
more. Unfortunately, it might be a bit more than you’ll actually need, and finding
the information you do need can be a bit hard. However, when you understand
the basics, it gets a lot easier.

In this chapter we’ll give a brief overview of how to use it, and how to read
the specification and find information relevant to your situation fast.

The PKCS #11 standard uses Hungarian notation, together with CamelCase
for its identifiers. To differentiate between our own example names and PKCS
#11 names, we’ll use underscore-delimited identifiers in our examples. We do
however declare variables in CamelCase when they are used as arguments for
PKCS #11 functions.

3.1 Function definitions

A typical function definition in the specification looks like this:

CK_DEFINE_FUNCTION(CK_RV, C_GetObjectSize)(

CK_SESSION_HANDLE hSession,

CK_OBJECT_HANDLE hObject,

CK_ULONG_PTR pulSize

);

This defines a function named ’C GetObjectSize’, the return value of which
is of type ’CK RV’.

It takes three arguments:

1. a CK SESSION HANDLE, which refers to a session

2. a CK OBJECT HANDLE, which refers to an object (for instance a key)

3. a CK ULONG PTR, which is a pointer to a CK ULONG type.

An overview of all functions is presented in chapter 11 of the specification.

What functions, mechanisms and operations depends on the module that is
used, and what state it is in. Refer to the documentation of your specific module
for more information about this.

3.2 Templates

A common way of conversing with PKCS #11 is through templates. You create
a template containing the type of information or result you need, and when you
call a specific function with that template, the engine will fill it in for you.

Most functions that provide information, or generate data, are called like this:

8

3 PKCS #11

1. Create template

2. Set template parameters

3. Call function with template

4. Read template results

One possible result, if specified by the caller, is to only set information about
the amount of memory needed for the result data, and not set the result data
itself. The usual way this is used is this:

1. Create template

2. Set NULL pointers for result data

3. Call function with template

4. Read the result sizes, and allocate memory

5. Set the allocation result pointers in the template

6. Call function with template again

This way, an application does not need to guess how much memory it needs.
For simplicity, we do not use this method in our examples later in this chapter,
but it is usually a good idea if you do not know exactly how much data to expect.

These are a few of the very basics. It might be a good idea to dive into some
actual code. But first, we need to get one thing out of the way.

3.3 Platform specific header

Unfortunately, PKCS #11 is not completely platform-independent. In order for
your application to work, you’ll have to provide some platform-specific definitions.

For this example, we’ll just place them in the main header file. If your
application has to be portable, you could provide separate header files and choose
the correct one through a configure script.

In this example, we chose for Linux. The specific settings for other platforms
can be found in chapter 8 of the specification.

Let’s create a header file pkcs11 linux.h:

#define CK_PTR *

#define CK_DEFINE_FUNCTION(returnType, name) \

returnType name

#define CK_DECLARE_FUNCTION(returnType, name) \

returnType name

#define CK_DECLARE_FUNCTION_POINTER(returnType, name) \

returnType (* name)

#define CK_CALLBACK_FUNCTION(returnType, name) \

returnType (* name)

9

3 PKCS #11

#ifndef NULL_PTR

#define NULL_PTR 0

#endif

#include "pkcs11.h"

#include <stdio.h>

#include <stdlib.h>

3.4 Initialization and cleanup

Let’s walk through a typical session. We’ll set up the environment, read what
keys are present on the device, and print some summary information about them.

First of all, we’ll include the header we created in section 3.3

#include "pkcs11_linux.h"

Most PKCS #11 functions return a status code of the type CK RV. Because
we do not want to make an example that doesn’t use error checking at all, but we
do not want to clutter up the code with graceful error handling, we’ll just provide
a function that checks the return value and exits with an error message if there
was a problem. The standard specifies exactly what error codes all functions can
return, so graceful error handling should not be too much of a problem. A good
idea is to at least map the error code back to its name.

void

check_return_value(CK_RV rv, const char *message)

{

if (rv != CKR_OK) {

fprintf(stderr, "Error at %s: %u\n",

message, (unsigned int)rv);

exit(EXIT_FAILURE);

}

}

So, now that we have that out of the way, let’s initialize the environment.

CK_RV

initialize()

{

return C_Initialize(NULL);

}

The initialization function has one argument. In it, you can specify some
global options. These all have to do with threading. See section 6.6 and section
11.4 of the specification for more information. Since we are not making a threaded
application here, we can safely pass NULL.

With the library initialized, it’s time to select a slot to use. PKCS providers
usually provide multiple slots that can take tokens. In this case, we just want
the first one.

10

3 PKCS #11

CK_SLOT_ID

get_slot()

{

CK_RV rv;

CK_SLOT_ID slotId;

CK_ULONG slotCount = 10;

CK_SLOT_ID *slotIds = malloc(sizeof(CK_SLOT_ID) * slotCount);

rv = C_GetSlotList(CK_TRUE, slotIds, &slotCount);

check_return_value(rv, "get slot list");

if (slotCount < 1) {

fprintf(stderr, "Error; could not find any slots\n");

exit(1);

}

slotId = slotIds[0];

free(slotIds);

printf("slot count: %d\n", (int)slotCount);

return slotId;

}

The C GetSlotList function takes three arguments, the first one is a boolean
value that specifies whether to only return slots that actually have a token present
at the moment, or just return any slots. The second is an array to place the slot
ID values in, and the third arguments is a pointer to the number of slots we have
allocated memory for.

As explained in 3.2, if the second argument would have been NULL, the
number of slots found will be set in the third argument. This value could be
used to allocate exactly the right amount of memory, after which the function
would be called again. This mechanism is used often in PKCS #11.

In this case we’ll do it in one step, and assume our reader does not have more
than 10 slots. If it does, this function should return the error code CKR BUFFER TOO SMALL.
Some implementations might just return the first 10 slots, although you shouldn’t
count on that.

So, if everything went right, we have a slot with a token now. For that slot,
we’ll start a session. This session will be the context for all actions we do later.

CK_SESSION_HANDLE

start_session(CK_SLOT_ID slotId)

{

CK_RV rv;

CK_SESSION_HANDLE session;

rv = C_OpenSession(slotId,

CKF_SERIAL_SESSION,

NULL,

11

3 PKCS #11

NULL,

&session);

check_return_value(rv, "open session");

return session;

}

The second argument is a flags parameter, in which certain settings can be
set. CKF SERIAL SESSION must always be set. If we would want to have write
access to the token (which we don’t for just reading keys), we would XOR this
with the value CKF RW SESSION.

If we would want the library to notify it of certain events in the session, we
would provide a callback function as the third argument. See section 11.17 of
the specification for more information on this.

The final argument is a pointer to the CK SESSION HANDLE variable that
we’ll use to refer to the session we have opened.

If the token needs a user to provide a PIN, we can use the function C login.
The pin is an array of bytes. Some implementations accept a NULL pin if it
wasn’t set, although this does not follow the specification.

void

login(CK_SESSION_HANDLE session, CK_BYTE *pin)

{

CK_RV rv;

if (pin) {

rv = C_Login(session, CKU_USER, pin, strlen((char *)pin));

check_return_value(rv, "log in");

}

}

That’s the initialization. Now we could go and actually do something. But,
for completeness’ sake, let’s first get the cleanup routines out of the way, these
are not much more than the reversed function made so far.

void

logout(CK_SESSION_HANDLE session)

{

CK_RV rv;

rv = C_Logout(session);

if (rv != CKR_USER_NOT_LOGGED_IN) {

check_return_value(rv, "log out");

}

}

We do one additional check on the return value; if we did not pass a PIN
to the login function, we would not be logged in at all, resulting in the er-
ror CKR USER NOT LOGGED IN. Rather than keeping track of whether we
should have been logged in, we’ll just watch out for this error.

12

3 PKCS #11

Two things remain: we are still in a session, and we need to clean up the
library.

void

end_session(CK_SESSION_HANDLE session)

{

CK_RV rv;

rv = C_CloseSession(session);

check_return_value(rv, "close session");

}

void

finalize()

{

C_Finalize(NULL);

}

3.5 Example 1: Reading keys

Okay, it’s time to do something interesting. In this example, we want to find all
the private keys on the token, and print their label and id.

Keys are just one type of object that a token can contain, so if we would have
magically acquired a pointer already (which we’ll get to in the next function),
this is the way to get information about it:

void

show_key_info(CK_SESSION_HANDLE session, CK_OBJECT_HANDLE key)

{

CK_RV rv;

CK_UTF8CHAR *label = (CK_UTF8CHAR *) malloc(80);

CK_BYTE *id = (CK_BYTE *) malloc(10);

size_t label_len;

char *label_str;

memset(id, 0, 10);

CK_ATTRIBUTE template[] = {

{CKA_LABEL, label, 80},

{CKA_ID, id, 1}

};

rv = C_GetAttributeValue(session, key, template, 2);

check_return_value(rv, "get attribute value");

fprintf(stdout, "Found a key:\n");

label_len = template[0].ulValueLen;

if (label_len > 0) {

13

3 PKCS #11

label_str = malloc(label_len + 1);

memcpy(label_str, label, label_len);

label_str[label_len] = ’\0’;

fprintf(stdout, "\tKey label: %s\n", label_str);

free(label_str);

} else {

fprintf(stdout, "\tKey label too large, or not found\n");

}

if (template[1].ulValueLen > 0) {

fprintf(stdout, "\tKey ID: %02x\n", id[0]);

} else {

fprintf(stdout, "\tKey id too large, or not found\n");

}

free(label);

free(id);

}

First of all, we define a template containing the types of information we want.
A template is an array of (type, pointer, size) values. The type specifies what
information we want, the pointer points to allocated data that will contain the
result, and the size points to the amount of memory we have allocated there. If
the ’pointer’ is NULL, the size needed will be placed in ’size’, so the application
can then allocate exactly enough memory and call this function again. This is
just like the way C GetSlotList worked.

If a value can not be extracted, or the amount of memory we have allocated
is not enough, the ’size’ value will be -1 after the call has completed.

What data you can ask for depends on the type of object and the function
you call.

With this template, we call C GetAttributeValue. Of course we need to
provide the session, the object we want data about, and the template. The final
argument is the number of entries in our template array. In this case, we have
specified 2 data types we want to get.

So after the call completed, and the library has supposedly filled out our
template, we check the size values, and if there is data, print it.

Now we’ll make a function that finds the keys on the token, and call the
previous function for each key.

void

read_private_keys(session)

{

CK_RV rv;

CK_OBJECT_CLASS keyClass = CKO_PRIVATE_KEY;

CK_ATTRIBUTE template[] = {

{ CKA_CLASS, &keyClass, sizeof(keyClass) }

};

14

3 PKCS #11

CK_ULONG objectCount;

CK_OBJECT_HANDLE object;

rv = C_FindObjectsInit(session, template, 1);

check_return_value(rv, "Find objects init");

rv = C_FindObjects(session, &object, 1, &objectCount);

check_return_value(rv, "Find first object");

while (objectCount > 0) {

show_key_info(session, object);

rv = C_FindObjects(session, &object, 1, &objectCount);

check_return_value(rv, "Find other objects");

}

rv = C_FindObjectsFinal(session);

check_return_value(rv, "Find objects final");

}

As in the previous function, we create a template. This time it is used as a
filter in the C FindObjectsInit function. Every object that matches the template
will be returned with subsequent calls to C FindObjects. You can ask for more
than one object at a time, but for now, lets just do them one at a time.

When we’re done, we call C FindObjectsFinal, this cleans up any memory
allocated by C FindObjectsInit.

Let’s tie this all together in an actual application:

int

main(int argc, char **argv)

{

CK_SLOT_ID slot;

CK_SESSION_HANDLE session;

CK_BYTE *userPin = NULL;

CK_RV rv;

if (argc > 1) {

if (strcmp(argv[1], "null") == 0) {

userPin = NULL;

} else {

userPin = (CK_BYTE *) argv[1];

}

}

rv = initialize();

check_return_value(rv, "initialize");

15

3 PKCS #11

slot = get_slot();

session = start_session(slot);

login(session, userPin);

read_private_keys(session);

logout(session);

end_session(session);

finalize();

return EXIT_SUCCESS;

}

In case we have a token without a user PIN, we’ll let the user specify it on
the command line. Normally, it would be a better idea to provide a callback
function, or at least do both.

That’s it! Compile it, link it, stick it in a stew, and you have your first PKCS
#11 application. Wasn’t that easy?

On the other hand, this example is only useful when there are actually keys
present on the token. What if there aren’t, and we want to add them ourselves?
Let’s do another example.

3.6 Example 2: Generating a key pair

If we use the same initialization code as we did in 3.4, well get an error when
we try to generate the key pair; CKR SESSION READ ONLY. So we have to
change one thing there:

CK_SESSION_HANDLE

start_session(CK_SLOT_ID slotId)

{

CK_RV rv;

CK_SESSION_HANDLE session;

rv = C_OpenSession(slotId,

CKF_SERIAL_SESSION | CKF_RW_SESSION,

NULL,

NULL,

&session);

check_return_value(rv, "open session");

return session;

}

So when we have that, we can create the keypair creation call. Again, we
define templates first. Two this time, one for the public key, and one for the
private key.

We set the mechanism, the number of bits in the modulus, and the exponent
(to RSA F4, or 65537, or 0x101).

We define a general boolean variable true, which we use a few times to set
flags.

16

3 PKCS #11

void

create_key_pair(CK_SESSION_HANDLE session)

{

CK_RV rv;

CK_OBJECT_HANDLE publicKey, privateKey;

CK_MECHANISM mechanism = {

CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0

};

CK_ULONG modulusBits = 1024;

CK_BYTE publicExponent[] = { 1, 0, 1 };

CK_BYTE subject[] = "mykey";

CK_BYTE id[] = {0xa1};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE publicKeyTemplate[] = {

{CKA_ID, id, 3},

{CKA_LABEL, subject, 5},

{CKA_TOKEN, &true, sizeof(true)},

{CKA_ENCRYPT, &true, sizeof(true)},

{CKA_VERIFY, &true, sizeof(true)},

{CKA_WRAP, &true, sizeof(true)},

{CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},

{CKA_PUBLIC_EXPONENT, publicExponent, 3}

};

CK_ATTRIBUTE privateKeyTemplate[] = {

{CKA_ID, id, sizeof(id)},

{CKA_LABEL, subject, 5},

{CKA_TOKEN, &true, sizeof(true)},

{CKA_PRIVATE, &true, sizeof(true)},

{CKA_SENSITIVE, &true, sizeof(true)},

{CKA_DECRYPT, &true, sizeof(true)},

{CKA_SIGN, &true, sizeof(true)},

{CKA_UNWRAP, &true, sizeof(true)}

};

rv = C_GenerateKeyPair(session,

&mechanism,

publicKeyTemplate, 8,

privateKeyTemplate, 8,

&publicKey,

&privateKey);

check_return_value(rv, "generate key pair");

}

Most data in these templates is hardcoded. Of course, for an actual applica-
tion, these need to be provided in a more dynamic way.

The templates themselves should be straightforward, for the public key:

17

3 PKCS #11

1. We want the id to be a1. A key id is a computer-readable identifier

2. We want the label to be ’mykey’. A key label is a human-readable identifier

3. We want the key to be stored on the token. If this value is not set, the key
will not be stored, and will be destroyed once the current session is closed.

4. We want the key to be used for encryption

5. We want the key to be used for verification

6. We want the key to be able to encrypt other key data

7. We want a modulus size of 1024 bits

8. We want the exponent to be 65537

And for the private key:

1. We want the id to be a1

2. We want the label to be ’mykey’

3. We want the key to be stored on the token

4. We want the key to only be usable by logged-in users

5. We want the sensitive key data to always be kept inside the token

6. We want the key to be used for decryption

7. We want the key to be used for signing

8. We want the key to be able to decrypt other key data

There are, of course, a lot of other options. This also depends on the exact
mechanism, and what it can do. To find this out, you will have to consult the
PKCS #11 specification.

Some tokens (for instance our Eutron ITSEC CryptoIdentity), will not allow
keys to be used for multiple purposes. In that case you would get an error code
CKR GENERAL ERROR, along with a message to specify a specific key usage.
In that case, remove the (CKA)WRAP, UNWRAP, ENCRYPT, and DECRYPT
lines from the template. Do not forget to lower the number 8 to 6 in the call to
C GenerateKeyPair.

Since we hardcoded the necessary variables, you should be able to use the
same main() function as in example 1, with only the call to read private keys
replaced by create key pair.

18

3 PKCS #11

3.7 Example 3: Signing data

If the last example worked on your particular device, we should have some keys
now. You should be able to verify it by calling the application for example 1
again.

But what good are keys if we don’t use them? In this example, we’ll create
a very simple application to sign the contents of a file, and store the signature
data in another. Normally, this data would be enclosed in some form of envelope,
depending on the security protocol used. But again, for the sake of simplicity,
we’ll just write the raw data.

We can use the same initalization functions as in example 1 and 2. Since we
will not be writing to the device, the flag CKF RW SESSION can be removed
again from start session.

We are going to use Sha1WithRSA, so let’s first get the SHA1 digest out of
the way. Some devices and PKCS #11 libraries can do this in one go, by using
the mechanism CKM SHA1 RSA PKCS, but some can only do them separately.

CK_RV

digest_data(CK_SESSION_HANDLE session,

FILE *data_file,

CK_BYTE *digest,

CK_ULONG *digestLen)

{

CK_MECHANISM digest_mechanism;

CK_RV rv;

CK_ULONG dataLen;

CK_BYTE *data = malloc(1024);

if (!data_file) {

fprintf(stderr, "Error, no file handle in digest_data\n");

exit(3);

}

digest_mechanism.mechanism = CKM_SHA_1;

digest_mechanism.pParameter = NULL;

digest_mechanism.ulParameterLen = 0;

rv = C_DigestInit(session, &digest_mechanism);

check_return_value(rv, "digest init");

printf("read data from %p\n", data_file);

dataLen = fread(data, 1, 1024, data_file);

printf("read %u bytes\n", (unsigned int)dataLen);

while (dataLen > 0) {

printf("add %u bytes to digest\n", (unsigned int)dataLen);

rv = C_DigestUpdate(session, data, dataLen);

19

3 PKCS #11

check_return_value(rv, "digest update");

dataLen = fread(data, 1, 1024, data_file);

}

rv = C_DigestFinal(session, digest, digestLen);

check_return_value(rv, "digest final");

free(data);

return rv;

}

In this method, we initialize a digest operation with the mechanism CKM SHA 1.
This mechanism does not take any arguments, so we set pParameter to NULL.
After we call C DigestInit, we feed it the data we are reading from the input file.

The actual digest operation is performed when we call C DigestFinal. If the
memory we allocated for the digest is too little (as told to the implementation by
the variable dataLen in this case), this would return the error CKR BUFFER TOO SMALL.
Otherwise, the hash is calculated, copied to the given buffer, and the operation
is cleaned up and finished. After this, the session can start another operation.
If the above error was returned, the operation is not finished, and initializing a
new operation would result in an error.

So now we have the digest. But if we want to do any signing, we are going
to need a specific key, so let’s make a function to get one.

CK_OBJECT_HANDLE

get_private_key(CK_SESSION_HANDLE session, CK_BYTE *id, size_t id_len)

{

CK_RV rv;

CK_OBJECT_CLASS keyClass = CKO_PRIVATE_KEY;

CK_ATTRIBUTE template[] = {

{ CKA_CLASS, &keyClass, sizeof(keyClass) },

{ CKA_ID, id, id_len }

};

CK_ULONG objectCount;

CK_OBJECT_HANDLE object;

rv = C_FindObjectsInit(session, template, 1);

check_return_value(rv, "Find objects init");

rv = C_FindObjects(session, &object, 1, &objectCount);

check_return_value(rv, "Find first object");

if (objectCount > 0) {

rv = C_FindObjectsFinal(session);

check_return_value(rv, "Find objects final");

return object;

20

3 PKCS #11

} else {

fprintf(stderr, "Private key not found\n");

exit(2);

}

}

This function is a lot like the one we used in example 1. It initializes a
search, and the gets the first object found. The main difference is that we specify
more in the filter template. We add a specific key ID. Of course, you could also
choose other parameters, like a CKA LABEL. Don’t forget to clean up by calling
C FindObjectsFinal.

While we’re at it, we also make a function to get a public key, with which we
can verify a signature.

CK_OBJECT_HANDLE

get_public_key(CK_SESSION_HANDLE session, CK_BYTE *id, size_t id_len)

{

CK_RV rv;

CK_OBJECT_CLASS keyClass = CKO_PUBLIC_KEY;

CK_ATTRIBUTE template[] = {

{ CKA_CLASS, &keyClass, sizeof(keyClass) },

{ CKA_ID, id, id_len }

};

CK_ULONG objectCount;

CK_OBJECT_HANDLE object;

rv = C_FindObjectsInit(session, template, 1);

check_return_value(rv, "Find objects init");

rv = C_FindObjects(session, &object, 1, &objectCount);

check_return_value(rv, "Find first object");

if (objectCount > 0) {

rv = C_FindObjectsFinal(session);

check_return_value(rv, "Find objects final");

return object;

} else {

fprintf(stderr, "Public key not found\n");

exit(3);

}

}

This function is exactly the same as the previous one, but for one detail; the
CKA CLASS value. This is a good hint that you might be better of specifying
this through a function argument, but this makes it more clear for now.

So when we can retrieve our keys, we can sign data.

21

3 PKCS #11

void

sign_data(CK_SESSION_HANDLE session, FILE *data_file, FILE *signature_file)

{

CK_RV rv;

CK_BYTE id[] = { 0x45 };

CK_OBJECT_HANDLE key = get_private_key(session, id, 1);

CK_MECHANISM sign_mechanism;

CK_ULONG digestLen = 20;

CK_BYTE *digest = malloc(digestLen);

CK_ULONG signatureLen = 512;

CK_BYTE *signature = malloc(signatureLen);

sign_mechanism.mechanism = CKM_RSA_PKCS;

sign_mechanism.pParameter = NULL;

sign_mechanism.ulParameterLen = 0;

rv = digest_data(session, data_file, digest, &digestLen);

check_return_value(rv, "digest data");

rv = C_SignInit(session, &sign_mechanism, key);

check_return_value(rv, "sign init new");

rv = C_Sign(session, digest, digestLen, signature, &signatureLen);

check_return_value(rv, "sign final");

if (signatureLen > 0) {

fwrite(signature, signatureLen, 1, signature_file);

}

free(digest);

free(signature);

}

As you can see, first we get a digest and initialize a signing operation. At
the end we get the signature by calling C SignFinal. If you have do not have a
fixed amount of data to sign, you can also replace C Sign by various calls of the
function C SignUpdate, followed by C SignFinal. Both C Sign and C SignFinal
end the signing operation initialized by C SignInit. In our case, however, we have
already performed a digest operation, and so our data will always have a fixed
length.

We allocate 512 bytes of data for the signature. This is enough to store a
signature made with an 4096-bit RSA key. If the key that is used is smaller, the
value of signatureLen will be changed in the call to C Sign.

In order for the library and device to know exactly what they have to do, we

22

3 PKCS #11

need to specify a mechanism again. In this case we choose CKM RSA PKCS.
The resulting signature size depends on the size of the modulus of the RSA key
used.

A full list of possible mechanisms can be found in section 12 of the specifi-
cation. Of course, your device needs to support the mechanism chosen, or you’ll
get an error code CKR MECHANISM INVALID.

If the signing operation succeeds, we write it to the output file file pointer.

We have hardcoded the key ID here. Of course you’ll want to change that to
your specific key ID. If you used the key generation function in example 2, you’ll
need to set it to 0xa1. Better yet would be to let the user specify the key.

For the sake of symmetry, we’ll just go ahead and create a function to verify
a signature too:

void

verify_data(CK_SESSION_HANDLE session, FILE *data_file, FILE *signature_file)

{

CK_RV rv;

CK_BYTE id[] = { 0x45 };

CK_OBJECT_HANDLE key = get_public_key(session, id, 1);

CK_MECHANISM sign_mechanism;

CK_ULONG digestLen = 20;

CK_BYTE *digest = malloc(digestLen);

CK_ULONG signatureLen = 512;

CK_BYTE *signature = malloc(signatureLen);

signatureLen = fread(signature, 1, signatureLen, signature_file);

sign_mechanism.mechanism = CKM_RSA_PKCS;

sign_mechanism.pParameter = NULL;

sign_mechanism.ulParameterLen = 0;

rv = digest_data(session, data_file, digest, &digestLen);

check_return_value(rv, "digest data");

rv = C_VerifyInit(session, &sign_mechanism, key);

check_return_value(rv, "verify init");

rv = C_Verify(session,

digest,

digestLen,

signature,

signatureLen

);

check_return_value(rv, "verify");

23

3 PKCS #11

printf("The signature is valid\n");

free(digest);

free(signature);

}

Again, we hardcode the key ID. And since we know it’s modulus size, we
also hardcode the signature length. Again we reserve 512 bytes for the signature,
which is enough for a signature made with a 4096-bit RSA key.

The method to verify a signature looks quite a bit like the method to create
one; We initialize the verification procedure, create a digest from the input data,
and check the result by calling C Verify with the signature we read.

If the signature is valid, C Verify will just return CKR OK. If it is invalid, it
will either return CKR SIGNATURE INVALID or CKR SIGNATURE LEN RANGE.
That last error code is returned when the signature is obviously invalid because
it has the wrong length.

Again, a setup with C VerifyUpdate and C VerifyFinal is also possible instead
of just C Verify. Both C VerifyFinal and C Verify end the current operation.

Because we do need a bit more input here than in the first two examples, we
expand on the main function a bit:

int

main(int argc, char **argv)

{

CK_SLOT_ID slot;

CK_SESSION_HANDLE session;

FILE *input_file = NULL;

FILE *output_file = NULL;

CK_BYTE *user_pin = NULL;

if (argc < 3) {

printf("Usage: pkcs11_example3 <input file> <output file> <pin>\n");

exit(0);

}

if (argc > 3) {

user_pin = (CK_BYTE *) argv[3];

}

initialize();

slot = get_slot();

/* signing */

input_file = fopen(argv[1], "r");

output_file = fopen(argv[2], "w");

session = start_session(slot);

24

3 PKCS #11

if (user_pin) {

login(session, user_pin);

}

sign_data(session, input_file, output_file);

if (user_pin) {

logout(session);

}

end_session(session);

fclose(input_file);

fclose(output_file);

/* verification */

input_file = fopen(argv[1], "r");

output_file = fopen(argv[2], "r");

session = start_session(slot);

if (user_pin) {

login(session, user_pin);

}

verify_data(session, input_file, output_file);

if (user_pin) {

logout(session);

}

end_session(session);

fclose(input_file);

fclose(output_file);

finalize();

return EXIT_SUCCESS;

}

Here, we actually perform two operations, which should be completely sep-
arate; first we open the two files for signing the first, and then we open them
again to verify the signature we’ve just created. Feel free to comment out either
one, or split them up into separate functions. There’s no error checking on the
file operations, which should obviously be present in a robust application.

One additional thing; some tokens or drivers cannot handle multiple opera-
tions within the same session well. Even though the operation has been finalized,
it will not start a new one. Some tokens might be silent and stop the first oper-
ation if you initialize a second within the same session, but others might return
an error even if you did finalize it. Therefore, in this example we just start a
completely new session.

That’s it!
Please start skimming over the PKCS #11 specification again. Hopefully you

can understand it better, now that you have seen some actual code in action.

25

4 OPENSSL AND EVP

4 OpenSSL and EVP

OpenSSL is an open source library that implements the SSL and TLS protocols.
More than that, OpenSSL also provides an exhaustive general cryptography li-
brary, with both high- and lowlevel API’s.

EVP is an OpenSSL API that provides a high-level interface to cryptographic
functions. While OpenSSL also has direct interfaces for operations like signing
data with an RSA key, the EVP library separates the operations from the actual
backend used. That way, the actual implementation that is used can be changed,
and one can specify an engine to use for the operations.

One of the engines that can be selected in recent versions is a pkcs11 engine.
What does this imply? If your application uses the EVP library, it’s very

easy to let your users use their HSM for their cryptographic needs, as long as
their HSM is supported by a driver.

For an example of usage, see getting things to work 4.1.
If you use this API, it’s still a lot like you’d have used the old low-level

functions, and you can still use your specific internal cryptographic algorithms.
However, a very simple addition makes the code a lot more flexible:

OpenSSL_load_config(NULL)

load_engine()

Instead of NULL you can provide a filename, but with null the value of the
environment variable OPENSSL CONF is used. In the provided file, the user
can add possible engines. For a better user experience, it is nice to provide a
configuration or command-line option that specifies the file, instead of letting the
user provide it through an environment variable.

4.1 Configuration file

Here’s a simple configuration file that selects the PKCS11 engine, and what actual
module to use with the engine.

PKCS11 engine config##

openssl_conf = openssl_def

[openssl_def]

engines = engine_section

[engine_section]

pkcs11 = pkcs11_section

[pkcs11_section]

engine_id = pkcs11

dynamic_path = /usr/lib/engines/engine_pkcs11.so

MODULE_PATH = /home/jelte/pkcs11/aep/pkcs11.GCC4.0.2.so.4.04

init = 0

26

4 OPENSSL AND EVP

The first few sections are some abstractions used. The important
section here is pkcs11 section. This provides an engine id, a dynamic path

for the main driver (in this case a pkcs11 module), and a specific driver for the
actual HSM used.

When you now run an openssl application with this config file, the pkcs11
engine is added to the list of available engines.

4.2 The openssl command-line tool

Now that we have a configuration file, it’s time to test it;

% openssl engine

(padlock) VIA PadLock (no-RNG, no-ACE)

(dynamic) Dynamic engine loading support

%

% OPENSSL_CONF=./my_ssl_conf openssl engine

(padlock) VIA PadLock (no-RNG, no-ACE)

(dynamic) Dynamic engine loading support

(pkcs11) pkcs11 engine

%

If the engine does not show up, you might want to check whether you specified
the right configuration file. OpenSSL silently fails if it cannot find the file. Syntax
errors in the file will be printed though.

Take a look at the name printed here, this is the name you need to use when
you are initializing your engine in your application later. The name specified in
the configuration file is only used there.

4.3 Code and documentation

In the next few sections, we’ll discuss some examples of EVP code.
Using the same structure as for the PKCS examples, we’ll first define some

general setup and cleanup functions, then some specific signing/verification func-
tions, and finally we’ll tie it all together in a calling main function. At every
defined function, we’ll reflect a bit on why we do what we do there, and note
some other areas that might be of interest to the application developer.

Before you dive in, you might want to skim the documentation for OpenSSL
and EVP. While it might be to much to go trough in one sitting, we advise you at
least take a look at ENGINE(3ssl), EV P DigestInit(3ssl), EV P SignInit(3ssl),
and EV P EncryptInit(3ssl).

After you have played around for a bit, you might want to read all of these
more closely. For now, let’s start typing some code.

4.4 Some general functions

First of all, let’s do the unavoidable initalization. As mentioned before, to make
full use of OpenSSL’s possibilities, we need to load a configuration that the user
may have set.

27

4 OPENSSL AND EVP

#include <openssl/conf.h>

#include <openssl/engine.h>

#include <openssl/err.h>

void

initialize()

{

OPENSSL_config(NULL);

OpenSSL_add_all_digests();

ERR_load_crypto_strings();

}

Since its argument is NULL, OpenSSL config loads the configuration file set
in the environment variable OPENSSL CONF.

We also call OpenSSL add all digests. This loads digest algorithm names,
so we can later initialize them by name (see example 2, verification, and the call
to EVP get cipher by name).

The third call here loads human-readable error messages into memory, this is
useful information when something goes wrong.

Like most API’s, a lot of OpenSSL methods return a status code that sig-
nifies whether the function call succeeded. OpenSSL also provides a feedback
mechanism similar to errno, so that a user can see some more information than
just an error code. Let’s make a small helper function that can assist us with
that.

void

check_ssl_rv(const char *function_name,

const int return_value,

const int success_value)

{

if (return_value != success_value) {

fprintf(stderr,

"Error, return value of %s was %d",

function_name,

return_value);

fprintf(stderr, " should have been %d\n", success_value);

fprintf(stderr, "OpenSSL error messages:\n");

ERR_print_errors_fp(stderr);

exit(ERR_get_error());

}

}

For completeness, we do not only pass a return value we received to this
function, but also the value that would signify success, just in case this is non-
standard. If there is an error, we use ERR print errors fp, which, if we have
loaded the error strings earlier, will print a nice list of errors.

28

4 OPENSSL AND EVP

Finally, if there was an error, we bluntly exit to the system. Naturally, you
might want to implement a more graceful error handling routine.

If we perform global initialization, we probably need some cleanup too.

void

clean_up()

{

ERR_remove_state(0);

ERR_free_strings();

ENGINE_cleanup();

EVP_cleanup();

CONF_modules_finish();

CONF_modules_free();

CONF_modules_unload(1);

CRYPTO_cleanup_all_ex_data();

}

ERR remove state frees up the error message queue for the current thread.
With a non-zero argument, you can specify the thread that should have its er-
ror queue cleaned up. ERR free strings removes the strings we loaded in the
initialization function.

ENGINE cleanup cleans any memory that is allocated dynamically by engine
functions. This happens for instance when certain engines are loaded, even if
they are not actually used. See the engine(3) manual page for more information.

EVP cleanup removes memory allocated when loading digest and cipher names
in the OpenSSL add all family of functions, like OpenSSL add all digests we
called earlier.

Next we free and unload any configuration modules that may have been
loaded. The argument to CONF modules unload is 1, telling OpenSSL to unload
both dynamically loaded modules and builtin modules. With this argument set
to 0, it would not unload builtin modules.

CRYPTO cleanup all ex data cleans some more generally used memory. Doc-
umentation for this function can be hard to find. Just know that it does free
some memory, and that this call is not thread-safe.

Now that we have the global tidying up sorted, let’s go to some specific
engine-related functions.

ENGINE *

select_engine(const char *engine_name)

{

int rv;

ENGINE *next_engine;

ENGINE *engine = ENGINE_by_id(engine_name);

29

4 OPENSSL AND EVP

if (!engine) {

fprintf(stderr, "Unable to load engine: %s\n", engine_name);

engine = ENGINE_get_first();

fprintf(stderr, "Available engines:\n");

while(engine) {

fprintf(stderr, "%s\n", ENGINE_get_id(engine));

next_engine = ENGINE_get_next(engine);

ENGINE_free(engine);

engine = next_engine;

}

exit(EXIT_FAILURE);

}

rv = ENGINE_init(engine);

check_ssl_rv("ENGINE_init", rv, 1);

return engine;

}

First we get a structural reference to the engine we need by calling ENGINE by id

with the correct name, in our case ’pkcs11’. If this call fails, apparently the right
modules are not loaded or the engine name is unknown. In that case we’ll try to
be bit userfriendly and print a list of available engines.

Internally, OpenSSL maintains a dynamic list of available engines. You can
simply get the first of that list by calling ENGINE get first, and walk through
that list by calling ENGINE get next until that return NULL. These functions
create structural references that should be freed.

If it succeeds, we have a structural reference to our engine. However, if we
want to actually do anything with it, we need to initialize it. To use the terms
of the OpenSSL documentation, we need to create a functional reference to it.
This is what ENGINE init does. This function returns 1 on success, so we check
for that.

We might want to be ready and add a little engine-specific cleanup too:

void

clean_engine(ENGINE *engine)

{

ENGINE_finish(engine);

ENGINE_free(engine);

}

ENGINE finish removes the functional reference, and ENGINE free removes
the structural reference.

So, with our engine up and running, it’s time to see whether it has any key
data. Since EVP does not provide key-management functionality, we can skip
over key enumeration and key creation. You’ll need to use specific tools for that,
or go straight to PKCS.

30

4 OPENSSL AND EVP

We’ll just assume there is at least one key present, and load it:

EVP_PKEY *

get_private_key(ENGINE *engine, const char *id)

{

EVP_PKEY *key = NULL;

key = ENGINE_load_private_key(engine, id, UI_OpenSSL(), NULL);

if (!key) {

fprintf(stderr, "Error loading private key with id %s\n", id);

}

return key;

}

EVP stores its keys in EVP PKEY structures. Private keys, public keys, and se-
cret keys are all stored in this structure. We load a private key with ENGINE load private key.

The key id is not just a simple byte string. OpenSSL gives you quite a few
options here. It is a null-terminated string which can be one of the following
forms:

• < id >

• < slot >:< id >

• id < id >

• slot < slot > −id < id >

• label < label >

• slot < slot > −label < label >

Where:

• id is a hexadecimal value representing the key id.

• slot is the slot number (an integer)

• label is the human-readable label of the key

The third argument provides a way for the application developer to specify
how a user can provide the user PIN to the HSM. A nice default is UI OpenSSL,
which just uses the command line to enter a PIN when needed. The fourth
argument is an optional callback argument for the UI function. UI OpenSSL
does not need an argument, so here it’s NULL.

Well if we can get private keys that easily, let’s just do the public counterpart
as well:

31

4 OPENSSL AND EVP

EVP_PKEY *

get_public_key(ENGINE *engine, const char *id)

{

EVP_PKEY *key = NULL;

key = ENGINE_load_public_key(engine, id, UI_OpenSSL(), NULL);

if (!key) {

fprintf(stderr, "Error loading public key with id %s\n", id);

}

return key;

}

4.5 Example 1: Signing

So we have an engine and a private key. Now it’s time to do some signing.
We’ll just blindly try to read from and write to the given files. As in our PKCS
examples, correct handling of these files is left as an excercise to the reader.

void

sign_data_evp(ENGINE *engine,

EVP_PKEY *key,

FILE *data_file,

FILE *signature_file)

{

unsigned char *data;

int data_len;

unsigned char *sig;

int sig_len;

int rv;

EVP_MD_CTX *ctx = EVP_MD_CTX_create();

sig = malloc(EVP_PKEY_size(key));

sig_len = EVP_PKEY_size(key);

rv = EVP_SignInit_ex(ctx, EVP_sha1(), NULL);

check_ssl_rv("EVP_SignInit_ex", rv, 1);

data = malloc(1024);

data_len = fread(data, 1, 1024, data_file);

while (data_len > 0) {

rv = EVP_SignUpdate(ctx, data, data_len);

check_ssl_rv("EVP_SignUpdate", rv, 1);

data_len = fread(data, 1, 1024, data_file);

32

4 OPENSSL AND EVP

}

rv = EVP_SignFinal(ctx, sig, &sig_len, key);

check_ssl_rv("EVP_SignFinal", rv, 1);

if (sig_len > 0) {

fwrite(sig, sig_len, 1, signature_file);

}

EVP_MD_CTX_destroy(ctx);

free(sig);

free(data);

}

To perform a signing operation, we first need to create a context. The
EVP MD CTX create function both allocates memory for that, and initializes it.

We can use EVP PKEY size function to figure out the size the signature will
have.

As with most cryptographic operations, signing takes three steps; initializa-
tion, data feeding, and finalization. In EVP SignInit ex we set up the context
with a digest function and possibly a specific engine. In this case, we do not
specify a specific engine, OpenSSL can figure out what to use from the key we
give it.

We specify that we want to use SHA1 hashing by using EVP sha1, which
returns the identifier for the SHA1 algorithm. In the verification method later,
we’ll use a different approach for this.

If the operation has been initialized successfully, we read our data file in
chunks of 1024 bytes, and feed it to the signer by using EVP SignUpdate.

When we are done feeding our data, we call EVP SignFinal, which finalizes
the operation and creates the signature.

If this worked and we have a signature, we write it to the specified signature
file.

Finally, we need to clean our context, by calling EVP MD CTX destroy.

Now to put it all together, we’ll create a simple main:

int

main(int argc, char **argv)

{

ENGINE *engine;

const char *engine_name = "pkcs11";

if (argc < 4) {

printf("Usage: evp_example1 <key id>");

printf(" <data file> <signature_file>\n");

exit(1);

33

4 OPENSSL AND EVP

}

initialize();

engine = select_engine(engine_name);

sign_data(engine, argv[1], argv[2], argv[3]);

clean_engine(engine);

clean_up();

return EXIT_SUCCESS;

}

That’s it! Compile it with -lcrypto (or your locally needed compilation op-
tions), and run it with OPENSSL CONF set to your configuration file, and
you can create a signature.

With the signature written out, let’s see whether we can verify it again.

4.6 Example 2: Verification

This example looks a lot like the previous one. Of course we will be reading a
signature instead of writing it, use some other function calls, and we’ll use the
public instead of the private key.

int

verify_data_evp(ENGINE *engine,

EVP_PKEY *key,

FILE *data_file,

FILE *signature_file)

{

unsigned char *data;

int data_len;

unsigned char *sig;

int sig_len;

int result;

int rv;

EVP_MD_CTX *ctx = EVP_MD_CTX_create();

const EVP_MD *md = EVP_get_digestbyname("SHA1");

if (!md) {

fprintf(stderr, "Error creating message digest");

fprintf(stderr, " object, unknown name?\n");

ERR_print_errors_fp(stderr);

34

4 OPENSSL AND EVP

exit(1);

}

rv = EVP_VerifyInit_ex(ctx, md, NULL);

check_ssl_rv("EVP_VerifyInit_ex", rv, 1);

data = malloc(EVP_MD_size(md));

data_len = fread(data, 1, EVP_MD_size(md), data_file);

while (data_len > 0) {

EVP_VerifyUpdate(ctx, data, data_len);

data_len = fread(data, 1, 1024, data_file);

}

sig = malloc(512);

sig_len = fread(sig, 1, 512, signature_file);

result = EVP_VerifyFinal(ctx, sig, sig_len, key);

EVP_MD_CTX_destroy(ctx);

free(data);

free(sig);

return result;

}

You might have noticed that the first few lines of code after the declarations
are different than in the signer. We are using a different method to specify a
digest algorithm here. Remember when we called OpenSSL add all digests?
This is why we did it; now we can specify a digest by its name as a string. For
this example, this might not be too useful. But when you do not use a fixed
algorithm, this gives your user more flexibility; it could technically even specify
an algorithm that isn’t known when your application was developed.

When we have a message digest structure, we use this to call EVP VerifyInit ex,
which works a lot like EVP SignInit ex. After initialization, we feed it the same
data as before.

Now we read the signature. Again we assume 512 bytes or less (since that is
the size a signature from a 4096-bit key would have).

Then we pass the signature we read to the verification operation with EVP VerifyFinal.
If the signature verifies this call returns 1. If the signature is bogus it returns 0,
and if it cannot perform the verification for any other reason it returns -1.

int

verify_data(ENGINE *engine,

const char *key_id,

const char *data_file_name,

35

4 OPENSSL AND EVP

const char *signature_file_name)

{

FILE *data_file;

FILE *signature_file;

EVP_PKEY *public_key = get_public_key(engine, key_id);

int result;

if (!public_key) {

printf("no public key\n");

} else {

data_file = fopen(data_file_name, "r");

if (!data_file) {

fprintf(stderr, "Error opening %s: %s\n",

data_file_name,

strerror(errno));

exit(errno);

}

signature_file = fopen(signature_file_name, "r");

if (!signature_file) {

fprintf(stderr, "Error opening %s: %s\n",

signature_file_name,

strerror(errno));

exit(errno);

}

result = verify_data_evp(engine,

public_key,

data_file,

signature_file);

fclose(data_file);

fclose(signature_file);

EVP_PKEY_free(public_key);

}

return result;

}

This is mostly the same as the sign data function.

int

main(int argc, char **argv)

{

int rv;

ENGINE *engine;

36

4 OPENSSL AND EVP

const char *engine_name = "pkcs11";

if (argc < 4) {

printf("Usage: evp_example2 <key id> <data file>");

printf(" <signature_file>\n");

exit(1);

}

initialize();

engine = select_engine(engine_name);

rv = verify_data(engine, argv[1], argv[2], argv[3]);

check_ssl_rv("Verify data", rv, 1);

printf("Signature verified: success\n");

clean_engine(engine);

clean_up();

return EXIT_SUCCESS;

}

And there we have it. Using this application with the data file you used
and the signature file created in example 1 should print the message ’Signature
verified: success’.

Encryption and decryption using assymetric cryptography works roughly the
same way, see EV P EncryptInit(3SSL) for more documentation on functions
that perform these operations.

37

5 DECIDING WHETHER TO USE PKCS #11 OR EVP

5 Deciding whether to use PKCS #11 or EVP

So you want to create an application that supports HSMs, or you want add
support for them to an existing application, should you choose to use EVP or
implement PKCS directly?

While there is of course no generally best choice, and personal preferences
will vary, here’s our take on it.

5.1 PKCS #11

If you are building an application that is specifically meant to be used with
one exact hardware module, your best option would probably be to use PKCS
directly. You will have less abstraction layers, and less dependency on external
libraries.

Furthermore, some modules do not implement PKCS completely, or even cor-
rectly. If you are using PKCS calls in your application, you have more flexibility
to work around these limitations, assuming that with EVP, you’d be using the
PKCS #11 backend. You’ll also have the direct ability to add key management
functionality to your application, should you desire to do so.

5.2 EVP

If you have an existing application that already uses EVP, or your application
is also intended to work with pure software implementations of cryptographic
operations, EVP would probably be the better choice. It is said that there are
pure software implementations of PKCS #11, but EVP will give your users more
flexibility to pick and choose their setup.

Also, while you do have a library dependency on OpenSSL, this library is
present on most modern systems, and you have no direct dependencies on specific
PKCS implementations.

38

A AEP KEYPER

A AEP Keyper

AEP offers a line of HSM products, including the Keyper Enterprise, the Keyper
Professonial, and the Keyper PCI.

They have been so nice as to provide an evaluation version of the AEP Keyper.

Some details:

• Works over network

• Key creation, storage and usage on the device

• FIPS-140-2 (see 1.3) level 4 certified.

More information can be found here:

http://aepnetworks.com/products/key management/

keyper/ent overview.aspx

A.1 Driver

The HSM comes with a CD that includes some code samples, a few tools, and a
list of drivers for specific operating systems and environments:

• Linux (gcc-2, gcc-3, and gcc-4)

• OSX (PPC-gcc-3, Intel-GCC4)

• Solaris (32-bit and 64-bit)

• Windows

At the time of this writing, there was no linux 64-bit version, nor a BSD
version, but both are said to be available shortly. You might be able to get it
running on those systems, but you’d probably need a complete stack of compat-
ibiliy libraries. Getting it to run that way is out of scope for this document.

The CD also includes a lot of documentation about the installation and im-
plementation, and what features are provided, as well as some test programs and
general examples and header files.

A.2 Utilities

The drivers for each environment come with two tools:

• inittoken This can be used to initialize the token, and set a user PIN.
When this is run, all generated keys are deleted.

• test drv This is a test tool that can test the machine and your setup.

39

A AEP KEYPER

A.3 Using the driver

If you want to use the tools provided, you only need to place the driver library in
you library path (for example LD LIBRARY PATH in linux, DYLD LIBRARY PATH
in OSX), and run the program.

Since this module works over a network, you’ll also need to provide its IP
address. You do this by specifying it for the name HSM in /etc/hosts (or your
local equivalent).

A quick way to use other tools that talk PKCS #11 in Linux is to use the
LD PRELOAD environment variable, thereby overriding any pkcs11 library in-
stalled on the system.

Of course you can link against the library when you are compiling your own
software.

A.4 Status

Once configured, the driver and the device both seem to run very well. I have
been able to do at least all operations shown in this document with the device.
Initializing it involves some steps; for security reasons, you’ll have to assign Se-
curity Officer smart cards, and use them to set the device to Operational, but it
is pretty straightforward.

A.5 Caveats and common error messages

An error you might come across when you’re just starting out is CKR DEVICE ERROR.
The first reason that can cause this error is that the device could not be reached
over the network, so check whether the HSM value is set in /etc/hosts, whether
the address is right and it is operational. In short, when you get this error, check
your setup and configuration.

40

B EUTRON ITSEC CRYPTOIDENTITY USB-TOKEN

B Eutron ITSEC CryptoIdentity USB-token

Some details:

• USB token (smartcard and reader in one)

Product page:
http://www.eutronsec.com/infosecurity/Contents/ProductLine/

Details.aspx?IDProd=15&IDFamiglia=2

More information can be found here:
http://www.opensc-project.org/openct/wiki/eutron

B.1 Driver

The supported token can be used with the drivers in OpenCT, and should be
readable out of the box. However, due to what may be an incompatibility with
PKCS in the eutron driver, newer versions of OpenSC might fail to connect to
the token.

B.2 Utilities

Since this device works with OpenCT drivers, all tools provided by OpenCT and
OpenSC should work with it.

B.3 Status

The only product from the line of CryptoIdentity tokens that works with OpenCT
is the ITSEC (the green one). The two other devices are not supported at all.

The device is already in operational state when it is delivered. This means
that you do not need to initalize it, but unfortunately, you cannot re-initialize it
either. It does not support key removal, or at least our version claims not to, so
usage might be a bit limited.

For more information, go to:
http://www.opensc-project.org/opensc/wiki/CryptoIdentityItsec

The key present does work, and does what it must do.

B.4 Caveats and common error messages

The card that is used does not support keys for both signing and encryption, but
OpenSC has a workaround for that (–key-split).

41

